肥宅钓鱼网
当前位置: 首页 钓鱼百科

安卓手势提示线适配(Android人工智能应用-如何让手机能明白你的手势)

时间:2023-06-11 作者: 小编 阅读量: 1 栏目名: 钓鱼百科

先说下这个数字手势识别APP的功能:能够识别做出的0,1,2,3,4,5,6,7,8,9,10这11个手势。APP通过手机摄像头拍摄出来的照片,不同机型有差异,要统一。对图片的缩放不能简单的直接缩小尺寸,那样的话会失真严重。我这里使用了面积插值法。

这篇博客主要基于我做的一个数字手势识别APP,具体分享下如何一步步训练一个卷积神经网络模型(CNN)模型,然后把模型集成到Android Studio中,开发一个数字手势识别APP。整个project的源码已经开源在github上,github地址:Chinese-number-gestures-recognition,欢迎star,哈哈。先说下这个数字手势识别APP的功能:能够识别做出的 0,1,2,3,4,5,6,7,8,9,10这11个手势。

一、数据集的收集

这么点照片想训练模型简直天方夜谭,只能祭出 data augmentation(数据增强)神器了,通过旋转,平移,拉伸 等操作每张图片生成100张,这样图片就变成了21500张。下面是 data augmentation 的代码:

from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_imgimport osdatagen = ImageDataGenerator( rotation_range=20, width_shift_range=0.15, height_shift_range=0.15, zoom_range=0.15, shear_range=0.2, horizontal_flip=True, fill_mode='nearest')dirs = os.listdir("picture")print(len(dirs))for filename in dirs: img = load_img("picture//{}".format(filename)) x = img_to_array(img) # print(x.shape) x = x.reshape((1,)x.shape) #datagen.flow要求rank为4 # print(x.shape) datagen.fit(x) prefix = filename.split('.')[0] print(prefix) counter = 0 for batch in datagen.flow(x, batch_size=4 , save_to_dir='generater_pic', save_prefix=prefix, save_format='jpg'): counter= 1 if counter > 100: break # 否则生成器会退出循环

二、数据集的处理

1.缩放图片

接下来对这21500张照片进行处理,首先要把每张照片缩放到64*64的尺寸,这么做的原因如下:

  • 不同手机拍出的照片的size各不相同,要统一
  • 如果手机拍出来的高分辨率图片,太大,GPU显存有限,要压缩下,减少体积。
  • APP通过手机摄像头拍摄出来的照片,不同机型有差异,要统一。

对图片的缩放不能简单的直接缩小尺寸,那样的话会失真严重。所以要用到一些缩放算法,TensorFlow中已经提供了四种缩放算法,分别为: 双线性插值法(Bilinear interpolation)、最近邻居法(Nearest neighbor interpolation)、双三次插值法(Bicubic interpolation)和面积插值法(area interpolation)。 我这里使用了面积插值法(area interpolation)。代码为:

#压缩图片,把图片压缩成64*64的def resize_img(): dirs = os.listdir("split_pic//6") for filename in dirs: im = tf.gfile.FastGFile("split_pic//6//{}".format(filename), 'rb').read() # print("正在处理第%d张照片"%counter) with tf.Session() as sess: img_data = tf.image.decode_jpeg(im) image_float = tf.image.convert_image_dtype(img_data, tf.float32) resized = tf.image.resize_images(image_float, [64, 64], method=3) resized_im = resized.eval() # new_mat = np.asarray(resized_im).reshape(1, 64, 64, 3) scipy.misc.imsave("resized_img6//{}".format(filename),resized_im)

2.把图片转成 .h5文件

h5文件的种种好处,这里不再累述。我们首先把图片转成RGB矩阵,即每个图片是一个64643的矩阵(因为是彩色图片,所以通道是3)。这里不做归一化,因为我认为归一化应该在你用到的时候自己代码归一化,如果直接把数据集做成了归一化,有点死板了,不灵活。在我们把矩阵存进h5文件时,此时标签一定要对应每一张图片(矩阵),直接上代码:

#图片转h5文件def image_to_h5(): dirs = os.listdir("resized_img") Y = [] #label X = [] #data print(len(dirs)) for filename in dirs: label = int(filename.split('_')[0]) Y.append(label) im = Image.open("resized_img//{}".format(filename)).convert('RGB') mat = np.asarray(im) #image 转矩阵 X.append(mat) file = h5py.File("dataset//data.h5","w") file.create_dataset('X', data=np.array(X)) file.create_dataset('Y', data=np.array(Y)) file.close() #test # data = h5py.File("dataset//data.h5","r") # X_data = data['X'] # print(X_data.shape) # Y_data = data['Y'] # print(Y_data[123]) # image = Image.fromarray(X_data[123]) #矩阵转图片并显示 # image.show()

训练模型

接下来就是训练模型了,首先把数据集划分为训练集和测试集,然后先坐下归一化,把标签转化为one-hot向量表示,代码如下:

#load datasetdef load_dataset(): #划分训练集、测试集 data = h5py.File("dataset//data.h5","r") X_data = np.array(data['X']) #data['X']是h5py._hl.dataset.Dataset类型,转化为array Y_data = np.array(data['Y']) # print(type(X_data)) X_train, X_test, y_train, y_test = train_test_split(X_data, Y_data, train_size=0.9, test_size=0.1, random_state=22) # print(X_train.shape) # print(y_train[456]) # image = Image.fromarray(X_train[456]) # image.show() # y_train = y_train.reshape(1,y_train.shape[0]) # y_test = y_test.reshape(1,y_test.shape[0]) print(X_train.shape) # print(X_train[0]) X_train = X_train / 255. # 归一化 X_test = X_test / 255. # print(X_train[0]) # one-hot y_train = np_utils.to_categorical(y_train, num_classes=11) print(y_train.shape) y_test = np_utils.to_categorical(y_test, num_classes=11) print(y_test.shape) return X_train, X_test, y_train, y_test

构建CNN模型,这里用了最简单的类LeNet-5,具体两层卷积层、两层池化层、一层全连接层,一层softmax输出。具体的小trick有:dropout、relu、regularize、mini-batch、adam。具体看代码吧:

def weight_variable(shape): tf.set_random_seed(1) return tf.Variable(tf.truncated_normal(shape, stddev=0.1))def bias_variable(shape): return tf.Variable(tf.constant(0.0, shape=shape))def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')def max_pool_2x2(z): return tf.nn.max_pool(z, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')def random_mini_batches(X, Y, mini_batch_size=16, seed=0): """ Creates a list of random minibatches from (X, Y) Arguments: X -- input data, of shape (input size, number of examples) Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples) mini_batch_size - size of the mini-batches, integer seed -- this is only for the purpose of grading, so that you're "random minibatches are the same as ours. Returns: mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y) """ m = X.shape[0] # number of training examples mini_batches = [] np.random.seed(seed) # Step 1: Shuffle (X, Y) permutation = list(np.random.permutation(m)) shuffled_X = X[permutation] shuffled_Y = Y[permutation,:].reshape((m, Y.shape[1])) # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case. num_complete_minibatches = math.floor(m / mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning for k in range(0, num_complete_minibatches): mini_batch_X = shuffled_X[k * mini_batch_size: k * mini_batch_sizemini_batch_size] mini_batch_Y = shuffled_Y[k * mini_batch_size: k * mini_batch_sizemini_batch_size] mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) # Handling the end case (last mini-batch < mini_batch_size) if m % mini_batch_size != 0: mini_batch_X = shuffled_X[num_complete_minibatches * mini_batch_size: m] mini_batch_Y = shuffled_Y[num_complete_minibatches * mini_batch_size: m] mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) return mini_batchesdef cnn_model(X_train, y_train, X_test, y_test, keep_prob, lamda, num_epochs = 450, minibatch_size = 16): X = tf.placeholder(tf.float32, [None, 64, 64, 3], name="input_x") y = tf.placeholder(tf.float32, [None, 11], name="input_y") kp = tf.placeholder_with_default(1.0, shape=(), name="keep_prob") lam = tf.placeholder(tf.float32, name="lamda") #conv1 W_conv1 = weight_variable([5,5,3,32]) b_conv1 = bias_variable([32]) z1 = tf.nn.relu(conv2d(X, W_conv1)b_conv1) maxpool1 = max_pool_2x2(z1) #max_pool1完后maxpool1维度为[?,32,32,32] #conv2 W_conv2 = weight_variable([5,5,32,64]) b_conv2 = bias_variable([64]) z2 = tf.nn.relu(conv2d(maxpool1, W_conv2)b_conv2) maxpool2 = max_pool_2x2(z2) #max_pool2,shape [?,16,16,64] #conv3 效果比较好的一次模型是没有这一层,只有两次卷积层,隐藏单元100,训练20次 # W_conv3 = weight_variable([5, 5, 64, 128]) # b_conv3 = bias_variable([128]) # z3 = tf.nn.relu(conv2d(maxpool2, W_conv3)b_conv3) # maxpool3 = max_pool_2x2(z3) # max_pool3,shape [?,8,8,128] #full connection1 W_fc1 = weight_variable([16*16*64, 200]) b_fc1 = bias_variable([200]) maxpool2_flat = tf.reshape(maxpool2, [-1, 16*16*64]) z_fc1 = tf.nn.relu(tf.matmul(maxpool2_flat, W_fc1)b_fc1) z_fc1_drop = tf.nn.dropout(z_fc1, keep_prob=kp) #softmax layer W_fc2 = weight_variable([200, 11]) b_fc2 = bias_variable([11]) z_fc2 = tf.add(tf.matmul(z_fc1_drop, W_fc2),b_fc2, name="outlayer") prob = tf.nn.softmax(z_fc2, name="probability") #cost function regularizer = tf.contrib.layers.l2_regularizer(lam) regularization = regularizer(W_fc1)regularizer(W_fc2) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y, logits=z_fc2))regularization train = tf.train.AdamOptimizer().minimize(cost) # output_type='int32', name="predict" pred = tf.argmax(prob, 1, output_type="int32", name="predict") # 输出结点名称predict方便后面保存为pb文件 correct_prediction = tf.equal(pred, tf.argmax(y, 1, output_type='int32')) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.set_random_seed(1) # to keep consistent results seed = 0 init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for epoch in range(num_epochs): seed = seed1 epoch_cost = 0. num_minibatches = int(X_train.shape[0] / minibatch_size) minibatches = random_mini_batches(X_train, y_train, minibatch_size, seed) for minibatch in minibatches: (minibatch_X, minibatch_Y) = minibatch _, minibatch_cost = sess.run([train, cost], feed_dict={X: minibatch_X, y: minibatch_Y, kp: keep_prob, lam: lamda}) epoch_cost= minibatch_cost / num_minibatches if epoch % 10 == 0: print("Cost after epoch %i: %f" % (epoch, epoch_cost)) print(str((time.strftime('%Y-%m-%d %H:%M:%S')))) # 这个accuracy是前面的accuracy,tensor.eval()和Session.run区别很小 train_acc = accuracy.eval(feed_dict={X: X_train[:1000], y: y_train[:1000], kp: 0.8, lam: lamda}) print("train accuracy", train_acc) test_acc = accuracy.eval(feed_dict={X: X_test[:1000], y: y_test[:1000], lam: lamda}) print("test accuracy", test_acc) #save model saver = tf.train.Saver({'W_conv1':W_conv1, 'b_conv1':b_conv1, 'W_conv2':W_conv2, 'b_conv2':b_conv2, 'W_fc1':W_fc1, 'b_fc1':b_fc1, 'W_fc2':W_fc2, 'b_fc2':b_fc2}) saver.save(sess, "model_500_200_c3//cnn_model.ckpt") #将训练好的模型保存为.pb文件,方便在Android studio中使用 output_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph_def, output_node_names=['predict']) with tf.gfile.FastGFile('model_500_200_c3//digital_gesture.pb', mode='wb') as f: # ’wb’中w代表写文件,b代表将数据以二进制方式写入文件。 f.write(output_graph_def.SerializeToString())

这里有一个非常非常非常重要的事情,要注意,具体请参考上一篇博客中的 2. 模型训练注意事项 链接为:将TensorFlow训练好的模型迁移到Android APP上(TensorFlowLite)。整个模型训练几个小时即可,当然调参更是门艺术活,不多说了。

这里小小感慨下,i7-7700k跑一个epoch需要2分钟,750ti需要36秒,1070需要6秒。。。这里再次感谢宋俞璋的神机。。关于如何搭建TensorFlow GPU环境,请参见我的博客:ubuntu16.04 GTX750ti python3.6.5配置cuda9.0 cudnn7.05 TensorFlow-gpu1.8.0

训练完的模型性能:

但是在APP上因为面临的环境更加复杂,准备远没有这么高。

PC端随便实测的效果图:

4.在Android Studio中调用训练好的模型

关于如何把模型迁移到Android studio中,请参考我的上一篇博客:将TensorFlow训练好的模型迁移到Android APP上(TensorFlowLite)。这里面解释下为何会用到OpenCV,这一切都要源于那个图片缩放,还记得我们在上面提到的area interpolation吗,这个算法不像那些双线性插值法等,网上并没有java版本的实现,无奈去仔细翻了遍TensorFlow API文档,发现这么一段话:

Each output pixel is computed by first transforming the pixel’s footprint into the input tensor and then averaging the pixels that intersect the footprint. An input pixel’s contribution to the average is weighted by the fraction of its area that intersects the footprint. This is the same as OpenCV’s INTER_AREA.

这就是为什么会用OpenCV了,OpenCV在Android studio中的配置也是坑多,具体的配置请参见我的博客:Android Studio中配置OpenCV。这里只说下,TensorFlowLite只提供了几个简单的接口,虽然在我的博客将TensorFlow训练好的模型迁移到Android APP上(TensorFlowLite)也提过了,但是这里还是想提一下,提供的接口官网地址

// Load the model from disk.TensorFlowInferenceInterface inferenceInterface =new TensorFlowInferenceInterface(assetManager, modelFilename);// Copy the input data into TensorFlow.inferenceInterface.feed(inputName, floatValues, 1, inputSize, inputSize, 3);// Run the inference call.inferenceInterface.run(outputNames, logStats);// Copy the output Tensor back into the output array.inferenceInterface.fetch(outputName, outputs);

注释也都说明了各个接口的作用,就不多说了。

我也不知道是不是因为OpenCV里的area interpolation算法实现的和TensorFlow不一样还是其他什么原因,总感觉在APP上测得效果要比在PC上模型性能差。。也许有可能只是我感觉。。

关于Android APP代码也没啥好说的了,代码都放到github上了,地址:Chinese-number-gestures-recognition,欢迎star,哈哈。

下面上几张测试的效果图吧,更多的展示效果见github,:Chinese-number-gestures-recognition

看到这儿,学会了吗?

最后,小编为大家准备了 从零基础到大佬的Android视频教程,先转发 关注,然后

私信小编“资料”就可以啦!

,
    推荐阅读
  • 雪碧和牛奶能一起喝吗(雪碧和牛奶能不能一起喝)

    同理,除雪碧外的碳酸饮料都不适宜与牛奶一起饮用。雪碧和牛奶间隔两小时最好雪碧和牛奶中的成分会发生沉淀反应,并且会降低牛奶本身的营养价值。不能与牛奶一起食用的食物除了雪碧类碳酸饮料不能与牛奶一起食用外,牛奶也最好不要与钙片一起服用,钙会和蛋白质产生沉淀;牛奶也不要与橘子汁、柠檬汁一同食用,果酸会影响蛋白质的营养价值。

  • 魏坤林名字打分102分(魏坤琳真是学霸吗)

    文章目录:一、魏坤林相关名字打分103二、魏坤林相关名字评分112三、魏坤林相关名字推荐四、魏坤林相关名字大全五、其他人还看了一、魏坤林相关名字打分103魏晨光魏晓娥魏嘉慧魏素萍魏凤桐魏志华魏知超魏其芳魏向辉魏胡子魏山县魏文超魏晓霞魏志峰魏胜利魏春辉魏启厚魏宁娣魏天波魏榛魏佳慧魏迎宁魏莱魏君贤魏蕾魏文豪魏文静魏宏名魏应州魏莲芳魏湾魏岩魏建云魏小军魏香音魏婴传魏晓鹏魏力魏承思魏家魏允韬魏佳星魏仁芳魏

  • 英短适合吃什么猫粮(除了猫粮外这几种)

    给英短猫食用有促进猫咪生长发育、增强免疫力,但是南瓜的含糖量较高,不宜多吃。可以保护英短猫的眼睛视力,保持毛发柔顺光泽,喂食胡萝卜一定要煮熟再给英短猫吃,否则容易拉肚子。西兰花西兰花是很多猫咪都喜欢吃的蔬菜之一,给英短猫喂食西兰花可以帮助英短猫促进肠道消化,还有抗氧化,促进伤口愈合的作用。

  • 教师资格证笔试考试程序(教师资格证笔试内容是什么)

    笔试前需打印准考证,按照准考证上明确的时间、地点和其他要求参加考试准考证一般可在考前一周登陆教育部中小学教师资格考试网站报名系统,今天小编就来聊一聊关于教师资格证笔试考试程序?接下来我们就一起去研究一下吧!准考证一般可在考前一周登陆教育部中小学教师资格考试网站报名系统。如对成绩有异议,可咨询当地考试机构如何复核。笔试单科成绩有效期为2年。

  • 华为mate30支持3d 华为mate30支持3dtouch吗

    华为mate30不支持3dtouch。

  • 全民k歌原来你也在这里(全民K歌时代留住声音)

    从香港和台湾的流行音乐到百花齐放的内陆,普遍迎来了全民K歌时代。那个时代也是娱乐业最容易建立歌手的时代,特别是香港和台湾的流行音乐已经成为人们日常的精神食物和文化消费。在全民K歌时代,几乎每个人都可以通过智能手机和音乐软件保持最感人的声音,甚至展示最美丽的风格。同样,那些著名的歌手也需要时代的机遇和努力才能成为像谭咏麟和张国荣这样的宫廷歌手。

  • 同程旅行五一集美盒子怎么购买(五一集美盒子购买方法)

    跟着小编一起来看一看吧!同程旅行五一集美盒子怎么购买进入微信页面,点击按钮。找到并点击按钮。进入页面后下拉页面至底部,点击进入活动链接。

  • 桃树夏剪的时间与方法(桃树夏剪的时间与方法教程)

    桃树夏剪的时间与方法桃树夏剪的时间桃树会在每年6~9月结果,在桃树开花结果前适当地修剪一下能增加它的结果量。可以在6~7月给桃树进行摘心处理,把多余的嫩芽和徒长的枝条都剪掉。修剪徒长、瘦弱的枝条时可以使用斜剪法,从枝条下部往上部斜着剪,这样不会使伤口处感染。

  • 玫瑰花乌梅泡水喝的功效与作用(玫瑰花乌梅泡水喝有如下功效作用)

    缓解酒精伤害:经常出外应酬,或者是参与酒局的朋友们,经常性都会摄入过量的酒精,这种情况下,会容易导致酒精中毒现象,而且过量的酒精毒素,还会导致肝脏机能受损的现象,用玫瑰花乌梅泡水喝之后,大家可以利用其中的营养物质,起到加速肝脏对于酒精毒素代谢的功效之外,更加快速地排解出体外,继而起到减轻肝脏负担,避免肝脏受到酒精毒素侵袭的作用。

  • 用杏鲍菇如何做凉菜(凉拌杏鲍菇做法介绍)

    以下内容希望对你有帮助!用杏鲍菇如何做凉菜杏鲍菇1个,洗净上锅蒸15分钟,取出放凉,撕成长条。碗中加入适量的盐、蒜末、辣椒面、葱花、芝麻,淋上热油,拌匀。加2勺生抽、2勺醋、1勺蚝油、1勺白糖、适量盐拌匀。把酱汁和杏鲍菇混合拌匀,最后撒点香菜末即可。