肥宅钓鱼网
当前位置: 首页 钓鱼百科

1-999所有自然数之和(所有自然数之和是-1)

时间:2023-08-21 作者: 小编 阅读量: 1 栏目名: 钓鱼百科

所有自然数之和是-1前段时间收到一位热心读者的邮件信中提到,如果认定1-11-1……=1/2为事实,就会得出123……=-1/12这样难以令人理解的结论这位读者所提及的自然数求和问题,恰巧在量子理论和弦理论中都起到颇为重。

前段时间收到一位热心读者的邮件。信中提到,如果认定1-1 1-1……=1/2为事实,就会得出1 2 3 ……=-1/12这样难以令人理解的结论。这位读者所提及的自然数求和问题,恰巧在量子理论和弦理论中都起到颇为重要的作用。从真空的能量,到时空的维度数量,都与自然数之和有着微妙的联系。在这个小小的数学魔术里面,甚至还隐含着时空不连续的秘密。

撰文 | 董唯元

数学老师曾告诉我们,只有收敛的级数才能求解无穷项之和,然而在一些科普书中,却会遇到一个神奇的求和:

所有自然数之和怎么会是负数,而且还是个分数?这到底是人性的扭曲,还是道德的沦丧?

把对称轴当作级数和

想要理解这个古怪的结论,我们先来看一个简单的例子:1, -1, 1, -1, ……这个序列可以求无穷项之和吗?意大利数学家格兰迪(Dom Guido Grandi,1671-1742)早在1703年就开始认真琢磨这个问题,可以说,这是所有发散级数求和研究的起点,这个序列后来就被命名为“格兰迪级数”。

意大利数学家格兰迪丨图源:维基百科

也许有小伙伴猜测,这个序列中1和-1的数量既然同样多,那么总和就应该等于0。可惜这样的猜测是错误的。无穷集就像个再生能力很强的变形虫,部分与整体同样多。我们从序列中拿走任意个1或者-1之后,剩下的1和-1数量仍然相同。如果所剩下的1和-1加和为零的话,那么岂不是总的求和仅由先取出的1或-1的数量决定——也就是任意整数。这显然太不靠谱了,看来压根不能依靠比较1和-1的数量来求和。

还有个办法,就是借助收敛的级数寻找线索。我们知道,在|q|<1时,

现在我们粗暴地让q=-1,于是就出现了

这个结果似乎还能令人接受,可是,q=-1毕竟是个“不合法”的条件,我们需要更合理的途径来安抚内心的不安。如果把这个级数的前n项和记做A(n),我们现在动手来求 A(∞)。

哈!根据这个等式,我们又一次得到了 A(∞)=½ 的结果。这回貌似没有明显违法的地方了,警察来了也不怕。可是,总还是感觉哪里不对。

A(1)=1

A(2)=1-1=0

A(3)=1-1 1=1

可以看出A(n)在1和0之间来回跳动,按照极限的定义,

这个极限不存在。当我们写下A(∞)这个符号时,它究竟指代什么,还没有清楚的定义。其实这也是发散级数求和的基础问题:如何定义发散级数的和。

相关的定义不止一种。大体来说,主要有切萨罗求和与阿贝尔求和两类,另外拉马努金和黎曼等人也发展出许多更一般性的理论,中间还掺有源自欧拉的诸多贡献。那些数学语言虽严格,但催眠和劝退的副作用也不小,所以本文不打算纠结于那些从集合论谈起的基础定义,只使用非常“物理”的视角来定义: A(∞)表示所有 A(n)的平均值。

以“平均值”定义的求和方式,使许多发散级数都可以进行求和。例如

1-2 3-4…

这个级数,也可以用同样的方法直接用眼睛瞪出结果。我们用B(n)表示前n项和,即

那么

B(0)=0

B(1)=1

B(2)=1-2=-1

B(3)=1-2 3=2

把这些B(n)所对应的点画在图上之后,完全不需要动笔计算,用眼睛就可以直接看出所有B(n)的平均值是1/4。

如果只看图还不放心,我们也可以借助前面 A(∞)=½ 的结论来推算 B(∞):

稍微调整等式右边的计算顺序,先让前面括号内第n项减去后面括号内第n项,然后再做加和。

A(∞)-B(∞)=B(∞)

所以

B(∞)=½A(∞)=¼

把自然数之和变成-1/12的魔术

当然,画出点来再用眼睛直接瞪出结果的方法,有时候也需要一些技巧。就以全体自然数之和为例,我们同样地令C(n)代表前n项和

麻烦出现了!显然C(n)对应的点都分布在一根上扬的抛物线上,没办法直接看出平均值,而且看起来压根就不存在有限的平均值!别急,我们可以继续变形。

这样我们就把每个C(n)对应的点,都拆成上式中绿色项和紫色项所对应的两个“半点”分别画出来,居然又可以凑成两条对称的曲线。

当我们把无限个“半点”都辛苦画完之后。就可以指着两根曲线中间的对称轴宣布:

因为所有C(n)的平均值就等于所有“半点”的平均值,而两根曲线上的“半点”分布完全对称,只在绿色曲线的开头位置差了一个无关紧要的0。

除了看图猜值,我们也可以借助刚才的 B(∞)=¼ 那个结果,再来计算一遍 C(∞)。

调整顺序后

于是得到

所以

其实,能够得到 -1/12 这个结果的途径还有许多。例如神奇的Zeta函数

这个以复数s为变量的函数,因著名的黎曼猜想及其与数论的紧密联系而被反复研究。数学家们可以写出这个函数的许多种变化形式,其中一种解析延拓到全部复平面的形式是

用这个形式也可以计算出

既然经过这么多五花八门的方式,都殊途同归到 -1/12 这个结果,我们是不是可以把 1 2 3 …=-1/12 这个式子堂而皇之地写进中学课本中呢?相信许多人会跟我一样,对此仍惶恐不安。因为在前述所有推演过程中,都埋藏着一个颇为隐蔽的问题,那就是等号的意义。将

直接写成

似乎理所当然,但其实两个式子中,前面的“=”代表的是“定义为”,而不是量值相等。所以,更清楚的写法应该是

这样就能看出,-1/12 这个数值,并不像1 1=2那样自然天成理所应当,而是需要事先假定“全体自然数之和是一个确定的数”,然后再精心挑选出一个逻辑自洽性最好的数值,指定其为全体自然数之和。只不过当逻辑自洽性和直觉发生明显冲突的时候,我们都会感觉惊诧,这在数学发展的道路上已经不是什么新鲜事了。

伸向无穷大的剪刀

前面的讨论中,我们直接无视了数学极限概念,粗暴地使用平均值当做发散级数的和。现在让我们重新捡起极限概念,从另一个角度看看-1/12是怎么跑出来的。

C(n) 这个发散级数,我们可以引入某个剪刀函数 f(x) 来压制那些趋向无穷大的项,从而使发散的趋势在某个特定的位置N附近停下来,并最终收敛到某个极限S(N)。这样我们就用标准的极限概念构造出一个S(N),当N有限时,S(N)是个有限值,而当N趋于无穷大时,S(N)就对应着全体自然数之和。

可以充当剪刀的函数有许多,比如我们取

此时

通过数值计算,我们发现S(N)随着N的增加而奔向正无穷。这倒是符合我们先前的直觉了,可是说好的-1/12呢?别急,我们再把S(N)用1/N展开看看。我们发现S(N)在大N的数值结果,可以被下面的展开式很好的拟合

哈!居然又看到了这个-1/12,它是S(N)展开式中的常数项。也就是说,在S(N)中与N的变化无关的成分,就是-1/12。当N足够大时,那些含1/N的项都可以忽略,S(N)可以被看做一根最低点在-1/12处的抛物线。

我们再取剪刀函数 f(x)=e^(-x) 试试。此时

这个求和可以严格计算出来。我们先对下面的等式两边求β的导数

可以得到

同样在大N条件下做1/N展开,就得到

取β=1就得到

同样也出现了常数项-1/12,而且也是根下垂到-1/12处的抛物线

如果 f(x) 直接取为跳变函数,也就是在 n=N 处突然截断,那么

就不会有-1/12这个常数项。

看起来,除了跳变函数的突然截断,其他平滑的截断方式都能得到

这个有趣的结果。这似乎是告诉我们,全体自然数之和即使注定无法摆脱走向无穷大的宿命,却出于某种神秘的理由一直对-1/12情有独衷。亦或可以说,

发散项只是平庸无奇的底色,而-1/12才是刻写在底色上的性格内核。

真空的能量

站在实用的视角来说,我们有时候需要像使用收敛级数一样处理自然数之和,所以就不得不找到某个确定的“缰绳”来驾驭。比如在研究真空能量的时候,物理学家就遇到了全体自然数之和,而且非常希望这个和是个确定的数。

在量子场论的理论模型中,真空就像一张立体弹簧网,由无数小弹簧横纵交织而成。而所谓粒子,就是其中某些小弹簧的振动足够剧烈,以至于远远望去以为弹簧网中出现了什么异物似的,但只要凑到近处就会看出,那里除了振动本身别无他物。也就是说,粒子本质上就是真空的振动。因此,当能量变化时,粒子的数量不必受任何守恒律的约束,可以凭空增加或者减少。不过,粒子能否产生或消失却与小弹簧的振动频率有关。在振动频率为ω时,粒子数n与场的能量E之间存在这样的关系:

从关系式可以看出,真空每攒够一份ћω大小的能量,就会产生出一个粒子;反之每减少一份就会擦除一个粒子。或者干脆说,每个粒子其实就是个ћω大小的能量包。有趣的是n=0时,它对应着真空里没有粒子的情况,此时能量是½ћω。也就是说,当真空的能量低到不能再低的时候,能量仍然不是0,这就是真空零点能。下面我们来具体计算一个有限空间内的真空能量,看看它与全体自然数求和到底是什么关系。

将所有频率的零点能累加起来,真空中总能量就是

瞧,自然数之和

就这样出现了,现在你应该能够理解,物理学家们是多么希望

是个确定数值了吧。更有意思的是,如果姑且憨憨地认为自然数之和就是-1/12的话,我们甚至可以设计一个物理实验来验证这个结论。

如下图这样放置三块相互平行的金属板,使甲乙之间距离为a,乙丙之间距离为b。

根据刚才的结论,我们知道甲乙之间的真空能量是

乙丙之间的真空能量是

现在我们想知道,当a<b时,中间位置的金属板乙会受到哪个方向的力。根据能量对位置的偏导可以求解受力情况。结果发现:如果

的话,金属板乙会受到一个向右的力;反之则受到向左的力。

其实,实验装置还可以进一步简化,我们可以把最右边的丙拿到无穷远处,只留下甲和乙,然后测量甲乙之间是吸引还是排斥,如果相互排斥,就说明

反之则说明

这个实验设想最早由荷兰物理学家卡西米尔(Hendrik Casimir,1909-2000)在1948年提出,当然提出实验的目的才不是测量自然数之和,而是为了验证真空零点能的存在。事实上,卡西米尔当年在提出这个实验的时候,就已经预言两金属板之间相互吸引,也就是对应

的情况,因为他的理论推算过程已然采用了解析延拓后的黎曼Zeta函数。1996年,华盛顿大学的Lamoreaux用实验证实了卡西米尔效应的存在,论文发表在1997年1月的《物理评论快报》(PRL)上。

需要澄清的是,卡西米尔效应的实验证实,只能说明真空零点能的存在,但是并不能真的用来验证数学意义上的所有自然数之和。其实,现实中的金属板只能阻拦有限频率范围内的电磁波,当频率大过某个数值时,金属板就无法阻拦这种极高频率的波。所以从更精确的角度计算卡西米尔效应时,需要考虑这种高频截断。不过具体计算会用到欧拉-麦克劳林公式和伯努利数这些催眠的内容,本文就不再涉及了。

下面我们转到弦理论,看看所有自然数之和是如何与维度的数量产生关系的。

时空的纬度

前面提到,两端固定的一根弹簧之上只能存在驻波,所有振动频率只能是最低频率的整数倍。对一根两端完全自由的弦来说,结论同样成立。两端固定意味着端点速度为零,而两端自由则意味着端点的加速度为零。二者之间的差别,无非就是傅里叶分解时该写成

还是

而已。也就是说,长度为L的弦,肯定有个像自然数序列一样的离散频率谱

另外,弦理论中的量子化方式与量子场论所使用的技术手段如出一辙,所以同样存在

关系。这意味着能量最低的弦并不是完全静止,而是具有

的能量,而且在每一个可以振动的维度上,都有这些能量。

假设空间维度数是d,那么一个被激发成光子的弦所具有的最低总能量就是

妥妥的又出现了

相对论告诉我们,光子的最低能量应该是零,所以跟相对论兼容的弦理论必须满足

推演到这里,我们就要祭出

这个大招,求解出d=25,也就是空间维数必须是25维,加上时间,总共26维时空。

在超弦理论中,由于超对称因素的引入,弦的基态能量提升为3倍,光子能量约束条件变成了

由此求出d=9,加上一个时间维度,总共凑成10维的时空。

以上就是玻色弦理论要求25 1维时空,以及超弦理论要求9 1维时空的故事梗概,希望读者能借助这些实例,对自然数之和在物理中的作用建立一些具像理解。

离散的时空

为了保持话题的收敛性,前文论述中刻意略过了许多有趣的细节。例如在弦的基态振动模式中,如果存在

的成分,那么必然有

这就意味着仅在弦的一个振动模式里,就包含了无穷大的能量。同样的,真空零点能的计算中,也会不可避免地含有能量无穷大的成分。这显然都太不合适,我们的理论模型需要有个边界,来防止这种在极高频率方向“紫外灾难”的发生。

之所以能产生无限大的频率,就是因为我们允许存在无限小的波长。那么自然就会意识到,可以消除“紫外灾难”的理论模型中,空间必然存在有限的最小尺度。更直白地说,就是空间不可能是连续的舞台,而必须是离散的梅花桩。这个最小尺度究竟是多少呢?一个天然的候选者,当然就是普朗克长度。

如果某个粒子的波长比普朗克长度还要短,那么这个粒子就会由于具备了太高的能量而把自己就地变成黑洞,而且这个黑洞所覆盖的区域又会超出普朗克长度。于是,普朗克长度就成了现有理论中最为自然的时空基本像素。

于是,先前的

就变成了

显然,呈正比的那部分能量,在乙板左右产生的作用力始终相互抵消,只有第二部分呈反比的能量,才对乙板产生了作用力。由此可见,卡西米尔效应是在两个巨大的首项恰好相互抵消之后,在第二项上显现出的效应,所以这种力异常微弱,只有把两个面积达平方米量级的金属板靠近到微米距离时,才能产生可供测量的吸引力。

现在我们才算真正解释了卡西米尔效应与自然数之和的关系,如果未来再遇到有民科企图用这个实验来证明自然数之和是个负数,尽可以毫不犹豫地送他一个白眼。

    推荐阅读
  • 中国第一个奥运会冠军是谁热(中国第一个奥运会冠军)

    下面希望有你要的答案,我们一起来看看吧!中国第一个奥运会冠军是谁热中国史上第一个奥运冠军是许海峰。许海峰,中国男子射击运动员,运动健将,第一位获得奥运会金牌的中国运动员,安徽和县人。他从小喜欢用弹弓打鸟,凭着自己卓越的努力,练就了一身高超的射击本领。1984年在第23届奥运会上,以566环的成绩获男子手枪60发慢射冠军,勇夺奥运第一金,也是中国奥运历史第一金,打开中国奥运新里程。

  • 哪些人不适合喝柠檬茶(什么人不适合喝柠檬茶)

    跟着小编一起来看一看吧!哪些人不适合喝柠檬茶胃溃疡患者:柠檬里面含有大量的钙,人体正需要钙物质额吸收,然而胃酸分泌过多的人,这些分泌物的消化需要吸收钙,从而会吸收去柠檬的钙物质。吸收的糖分太多的话,会加重病人的病情,而且还会很严重,所以不宜多吃。

  • 秋季蚕豆栽培技术(蚕豆的栽培技术)

    目前可选用大、小粒蚕豆、本地蚕豆等品种。若遇干旱年份,土壤墒情不足,可灌跑马水,畦面湿润后排水,使田间土壤始终保持湿润,以利蚕豆生长发育。因此,摘除主茎及少量花荚,可改善体内营养状况,增加分枝及其花数,延迟花期,提高结实率。蚕豆由6~7个小叶组成的复出叶的出现,是不孕花开始产生的标志。采收蚕豆主要采收嫩豆和种子以供食用,故应适时采收。

  • 未来纯电动汽车的特点(为什么这两年电动汽车的设计有点平庸)

    为什么这两年电动汽车的设计有点平庸➤电动汽车相比燃油车使用起来天差万别加油站是不去了,只是在外面偶尔会提心吊胆地找充电桩,但家里装了充电桩的每每想起那油价,心里还是会有点小窃喜当然,最重要的是(相信很多人也都听身边的电动汽车的车主朋友。

  • 益生菌秸秆饲料的功效,可以提高消化率

    根据2003-2006年的测量结果,肉牛对益生菌秸秆饲料的消化率为65.2%,比未处理秸秆、氨化秸秆、微贮秸秆的消化率有提高。9月21日-11月21日,预试7天,测试6月龄黑山羊36只,试验组归牧后补充益生菌秸秆饲料,对照组补饲未处理秸秆料,结果试验组日重增加245g,比对照组增加30%以上。

  • 胃癌晚期癌细胞破裂(五旬男子胃癌晚期)

    二是降低对正常细胞的伤害,减少副作用。而且肿瘤热疗只是对局部组织进行了加热,不会导致身体组织脱水或者引起代谢紊乱等问题,安全性更高。目前“肿瘤热疗”在国内的开展情况对于癌症患者来说,肿瘤热疗的推进是好消息,意味着治疗又多了一种选择。其次,肿瘤热疗也不适用于所有的人体组织,尤其是像血液系统和脑部的癌症,不适宜升高温度进行治疗,否则会减缓血液流动速度,造成血液凝固,引起其他并发症。

  • 手机只能呼出不能呼入(手机可以呼出但是无法呼入怎么做)

    手机只能呼出不能呼入核对是否(拨打)个别联系人电话(呼入)才会出现,如是建议您对比下其他联系人,不排除是对方手机异常导致。核对机身是否有对通话功能进行相关限制,例如设置黑/白名单,建议先全部取消后进行尝试观察。如上述操作无法改善,建议备份机身资料进行恢复出厂设置尝试。

  • 济公主演游本昌近况(扮演者游本昌成全球年龄最大网红)

    ▲游本昌扮演的济公形象深入人心近日,这位83岁高龄的“济公”因为一条微博再次引发了广大网友粉丝的关注。如此数据,游老堪称全球年龄最大的网红。细心的网友不难看出,游老发布的这条微博带上了#搞笑红人大赛#的标签。如今,游本昌老先生的微博粉丝已经达到了26万之多,吸引了一批忠实的粉丝。以前,游老还只是自己通过微信发发朋友圈;如今,83岁高龄的游老还有另外一个身份,今日排行榜签约“自媒体人”。

  • 中药川芎的作用(中药川芎的作用介绍)

    中药川芎的作用川芎是一味中药,来源于伞形科植物川芎的干燥根茎。它的性味辛温,归肝经、胆经和心包经。川芎的功效与作用是活血行气、祛风止痛,可用于治疗血瘀气滞的痛证。本品辛散温通,既能活血化瘀,又能行气止痛,为血中之气药,具有通达气血的功效,所以善于治疗气滞血瘀的胸胁、腹部各种疼痛症状。需要注意的是本品阴虚火旺、多汗以及热盛等症状慎用,孕妇慎用。

  • 免试入学的在职研究生院校(2022年在职研究生即将开始报名)

    目前,2021年考研初试已经结束。那些没有踏上21年考研的人群,不要着急!赶快了解一下吧!NO.5中国社会科学院研究生院招生专业:民商法、酒店管理、旅游景区管理工作、艺术鉴赏与审美艺术、现代物流与供应链管理、经济法、新闻学等学费学制:2.7万~3万,2年上课方式:网络班点击进行了解!